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Abstract Recent studies have explored the spatial transcriptomics patterns of Alzheimer’s
disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique
genome-wide transcriptomic features associated with different spatial regions and patholog-
ical status. However, the dynamics of gene interactions that occur during amyloid-b accumu-
lation remain largely unknown. In this study, we performed analyses on ligand-receptor
communication, transcription factor regulatory network, and spot-specific network to reveal
the dependence and the dynamics of gene associations/interactions on spatial regions and
pathological status with mouse and human brains. We first used a spatial transcriptomics da-
taset of the AppNL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor
pairs with opposite tendencies throughout the amyloid-b accumulation process and showed the
specific ligand-receptor interactions across the hippocampus layers at different extents of
pathological changes. We then identified nerve function related transcription factors in the
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hippocampus and entorhinal cortex, as well as genes with different transcriptomic association
degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics da-
taset from different AD mouse models and human single-nuclei RNA-seq data/AlzData data-
base were used for validation. This is the first study to identify various gene associations
throughout amyloid-b accumulation based on spatial transcriptomics, establishing the founda-
tions to reveal advanced and in-depth AD etiology from a novel perspective based on the
comprehensive analyses of gene interactions that are spatio-temporal dependent.
ª 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

The relationship of amyloid plaques to the neurodegener-
ative process and related gene expression changes is a
central question in Alzheimer’s Disease (AD) research.
Spatial transcriptomics (ST) is an attractive approach that
provides unbiased transcriptome profiling of sequenced
molecules with spatial localization and focused image sig-
nals like amyloid plaques.1,2 Previous studies used mouse
brains from AppNL-G-F (AD model) and C57BL/6 (wild-type/
WT) mice at 3, 6, 12, and 18 months of age to explore ST
with the corresponding quantitative amyloid plaque index
information, and demonstrated alterations in the plaque-
induced and oligodendrocyte gene networks in different
phases of AD. However, the dynamic changes of gene in-
teractions between ligand-receptor (L-R) pairs, mediated
by transcription factor (TF) regulation, and various degrees
of gene associations/interactions at the transcriptome level
throughout the disease process in different brain regions
remain largely unexplored.

Defining a more detailed landscape of how different
types of gene interactions are altered in the neuronal
structures of the brain may contribute to a better under-
standing of AD etiology.2e4 To accomplish this goal, multi-
ple approaches such as CellPhoneDB5 and single-cell
regulatory network inference and clustering (SCENIC)6 have
been used to resolve spatio-temporal differences in gene
interactions in the same ST dataset. In addition, ST allows
gene expression profile selection to be anchored to some
particular brain regions of interest, which in this study were
the hippocampus (HP) and entorhinal cortex (ENTI). The HP
and ENTI play central roles in AD pathology. Hippocampal
deficits in amyloid-b (Ab)-related rodent models of AD have
revealed synaptic, behavioral, and circuit-level defects.7,8

ENTI is one of the earliest affected brain regions.9 Ab pro-
teins are seen primarily in the ENTI in mild AD and “spread”
to the HP and other cortical areas as the disease pro-
gresses.10 Selective overexpression of mutant amyloid
precursor protein (APP) in ENTI has been reported to cause
an aberrant excitatory cortico-hippocampal network ac-
tivity leading to behavioral abnormalities.10,11

Here we used the ST dataset of AppNL-G-F and C57BL/6
mice with annotations for brain region,12 AD phenotype,
and Ab index to explore the genome-wide transcriptomic
features associated with different spatial regions and
pathological status. In general, our work revealed 17 L-R
pairs with opposite tendencies throughout the Ab accu-
mulation process. We also showed the specific L-R in-
teractions across the HP layers at different extents of
pathological changes which may be related to their unique
functions cross these region pairs. We searched the
convergent functional genomic (CFG) scores of these
unique L-R pairs in the AlzData database13 to validate their
AD-related functions. Next, we identified nerve function
related TFs in the HP and ENTI in order to explore their
changes with disease progression. We then calculated
genes with different degrees (interactive connection with
other genes) based on the network degree matrix (NDM)
from spot-specific network (SSN) analysis. The purpose was
to reveal unique gene connections in different brain regions
and age groups of different phenotypes (WT/AD). These
results identified novel and known L-R pairs/genes that may
contribute to disease pathology and revealed the strong
and coordinated cellular responses in the amyloid plaque
niche based on a comprehensive analysis of gene in-
teractions that are spatio-temporal dependent.
Materials and methods

Data sources and workflow

The whole brain ST dataset used in the present study was
obtained from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/gds) with accession num-
ber GSE152506. This dataset12 integrated 10,327 tran-
scriptomics profiles (10,327 spots/tissue domains) from
AppNL-G-F and C57BL/6 male mice at 3, 6, 12, and 18 months
of age as one gene expression matrix annotated with Brod-
mann area, pathological status (Ab index), and age infor-
mation. Twelve mouse samples were used in this dataset:
mouse number (n)Z 2 per phenotype (WTor AD) for 3 and 18
months of age; nZ 1 per phenotype (WT or AD) for 6 and 12
months of age; nZ 12 for total. Two ST slides were included
per brain sample from each of the 3- and 18-month mice.
Only one ST slide was included per brain sample from each of
the 6- and 12-month mice. The total ST slide number was 20,
including 4 in WT_03 (3 months), 1 in WT_06 (6 months), 1 in
WT_12 (12 months), 4 in WT_18 (18 months), 4 in AD_03, 1 in
AD_06, 1 in AD_12, and 4 in AD_18. Spatial transcriptomics
experiments were performed following the Library Prepa-
ration Manual (Spatial Transcriptomics, Stockholm, Swe-
den).14 The diameter of a tissue domain is 100 mm. Data
integration andnormalization (by the EdgeR “cpm” function)
for the multiple slides for the same age and phenotype
groups were done in the original paper12 as well as the log-
cpm matrix downloaded from GEO.
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The HP ST dataset used in the present study was avail-
able at Mendeley https://doi.org/10.17632/6s959w2zyr.1y.
This dataset came from a study2 which included two types
of AD models. The triple transgenic AD model (3xAD) ex-
presses three human gene variants: APP K670N/M671L,
MAPT P301L, and PS1 M146V. 3xPB mouse is a modified
version of the 3xAD strain formed by adding a deficiency in
DNA polymerase beta (Polb). The 3xPB AD model displays
more severe deficits in memory, learning, and long-term
potentiation as well as higher levels of DNA damage and cell
death. All mice are male (11e13 months of age) on a
C57BL/6J background. For HP ST, three mice per model and
two sections per mouse were included.

The ENTI single-nuclei RNA sequencing (snRNA-seq)
dataset used in the present study was obtained from the
GEO database with accession number GSE138852. This
dataset came from a study15 in which post-mortem AD and
non-diseased age-matched human ENTI tissues were
collected from the Victorian Brain Bank. Disease or control
group allocation was based on overall amyloid and tau pa-
thology. In total, this dataset included six AD and six control
gene expression matrices (6 AD patients and 6 control in-
dividuals) from snRNA-seq with annotations for cell type
and phenotype.

The functions of genes in significant L-R pairs or TF
regulatory networks were validated in an AD database,
AlzData (http://www.alzdata.org/).13 AlzData provides
various types of information for target genes, including the
expression of the target gene regulated by AD genetic
variants; significant physical interactions of proteins of the
target genes with AD core genes such as APP, PSEN1, PSEN2,
APOE, or MAPT13; and differentially expressed in AD mouse
models before AD pathology emergence and the correlation
of target gene expression with AD pathology in amyloid
beta or tau line AD mouse models. One CFG score is added if
any of the above evidence is significant. The CFG score
ranged from 0 to 5.

In brief, we used the whole brain ST dataset (GSE152506)
to perform L-R interaction analysis within spots and across
brain regions (HP layers). Next, TF network and SSN analysis
wereperformed inHPandENTI areas. ThenAlzData database
was used to validate the target genes’ AD-related functions
by the CFG score. We also used the independent HP ST
dataset to validate the expression of unique L-R interactions
that are only differentially expressed in one HP region pair in
the whole brain ST dataset. The ENTI snRNA-seq dataset was
used to validate the different expression of important TFs in
human AD patients compared with the control (Fig. 1A).
Analysis of L-R communication

We used CellPhoneDB,5 a public knowledge base of ligands-
receptors that considers interacting partners as binary in-
teractions annotated by IUPHAR (http://www.
guidetopharmacology.org/) and cytokines, hormones, and
growth factors interacting with receptors annotated by the
iMEX consortium (https://www.imexconsortium.org/) to
systematically analyze the intra-spots/cross brain regions
in their communication network, and calculate the average
log gene expression level and communication significance
of each L-R pair. To perform statistical inference of L-R
specificity, a null distribution for each L-R pair mean was
generated by random permutation of spot labels (1000
times by default). By calculating the proportion of the
means that are “as or more extreme” than the actual
mean, CellPhoneDB obtained a P-value for the likelihood of
spot-type specificity of a given L-R pair. Predicted inter-
action pairs with P-values <0.05 were considered as sig-
nificant as defined in the original analyses.5

The intra-spot molecular interactions analysis only used
CellPhoneDB to get the expression value of each L-R pair
within each spot. Specifically, CellPhoneDB only provided
the L-R database and calculated the average log gene
expression level of ligand and receptor genes in the same
spot in this part.

In the cross-region L-R analysis, CellPhoneDB compared
the average log gene expression level of each L-R pair
among different region pairs. P-values <0.05 were consid-
ered statistically significant (Fig. S1A). The output results
(Fig. 4A, B) were the total significant L-R pair numbers
(Fig. S1B) in each pair of regions.

Our L-R communication analysis needed more detailed
subgroup classification (regarding certain brain regions in the
same age, Ab index, and phenotype group) information than
TF regulatory network and SSN analyses as input. However,
the expression data missing rate in some brain regions at
certain Ab accumulation levels was higher in 6- and 12-
month-age groups than the two other age groups. This is
because the total numbers of spots in these groups were
limited in the whole brain ST dataset compared with the 3-
and 18-month-age groups. So, the 6- and 12-month-age
groups were not involved in our L-R communication analysis.

Soft clustering analysis

Soft clustering methods such as Mfuzz can assign genes to
several clusters using the fuzzy c-means algorithm with
time/process-course data on the gene expression and may
be more accurate and robust than hard clustering.16 To
analyze the expression trend of intra-spot L-R pairs with Ab
accumulation, the Mfuzz package in R was used to perform
soft clustering analysis for visualizing the Ab level-depen-
dent expression patterns of L-R pairs and assign L-R pairs to
several cluster modules with different expression ten-
dencies through Ab accumulation. Parameter m was
calculated by the “mestimate” function.

Gene enrichment analysis

To identify the significantly enriched pathways of signifi-
cant L-R gene pairs, we used the clusterProfiler R package
to perform Gene Ontology (GO) enrichment analysis. Only
terms showing adjusted P-values less than 0.05 (adjusted
for multiple testing by using the BH method) were consid-
ered as significantly enriched.

SCENIC analysis

First, putative TF motifs were identified by RcisTarget
(hg19-tss-centered-10kb-7species.mc9nr.feather, https://
resources.aertslab.org/cistarget) software in Bio-
conductor. The SCENIC algorithm was then used to
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Figure 1 L-R pair clustering and enrichment analysis. (A) Workflow of the research. (B) Dynamic changes of three L-R clusters in
the 3-month spots through Ab accumulation. The X-axis represents the expression changes and the Y-axis represents different Ab
accumulation groups. Each line represents one L-R pair. The line color represents the membership score for each L-R pair from low
(blue) to high (red). (CeF) Neuron (C), axon (D), synapse (E), and amyloid (F) related GO analysis results of L-R genes of three L-R
clusters in 3 months. The outline color represents different clusters. The fill color represents adjusted P-values from low (blue) to
high (yellow). (G) Dynamic changes of four L-R clusters in the 18-month spots through Ab accumulation. The X-axis represents the
expression changes and the Y-axis represents different Ab accumulation groups. Each line represents one L-R pair. The line color
represents the membership score for each L-R pair from low (blue) to high (red). (HeK) Neuron (H), axon (I), synapse (J), and
amyloid (K) related GO analysis results of L-R genes of four L-R clusters in 18 months. The outline color represents different
clusters. The fill color represents adjusted P-values from low (blue) to high (yellow).
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construct gene networks and scored regulon (gene regula-
tory modules) activities.6 We used GENIE3 in Bioconductor
to identify co-expressed gene modules and infer potential
TF targets for each module with significantly enriched
motifs. RcisTarget identifies enriched transcription factor
binding motifs and candidate TFs for a gene list. The motifs
that are annotated to the corresponding TF and obtain a
normalized enrichment score >3.0 are retained. Regulons
were identified from co-expression and DNA motif analyses.
Then, the AUCell function calculated an area under the
curve across the ranking of all genes in a particular spot. By
calculating whether the input gene subset (TFs and their
putative targets in a particular regulon) was enriched at the
top of the ranking, AUCell scored the regulon activity in



Table 1 List of 17 L-R pairs that showed opposite ten-
dencies through the Ab accumulation process in the 3-
month and 18-month groups.

L-R pair Complex

C3_aMb2 aMb2: ITGB2/ITGAM
EFNA1_EPHA8
FZD9_WNT1
SPP1_a4b1 a4b1: ITGB1/ITGA4
INS_INSR
EPHB4_EFNB1
TNF_PTPRS
EPHA4_EFNB1
EFNB2_EPHA4
ADGRL1_NRG1
NTF3_NTRK3
EPHB6_EFNB2
NRP1_VEGFA
EPHB2_EFNB2
EPHA3_EFNA3
EPHA1_EFNA3
EPHA8_EFNA3
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each spot as a whole, instead of only the TF or individual
genes. Regulatory network of high confident annotation
interactions (the direct TF-target gene interactions anno-
tated by the cisTarget databases, highConfAnnot Z “True”)
were visualized in Cytoscape (v3.9.1).

Protein-protein interaction network

The protein-protein interaction network was constructed
by the Search Tool for the Retrieval of Interacting Genes
(STRING) database. The String database provides informa-
tion about known and predicted protein interactions based
on correlation, regulation relationships, or protein binding
validated in Co-IP or other experiments. The Cytoscape
software v.3.9.1 was used to construct the protein-protein
interaction network based on STRING analysis results.

SSN analysis

We performed SSN analysis in Matlab software as previously
described.17 Briefly, the SSN method calculates a statistic
brxy

ðkÞ to assess the inter-relationships among gene x and
gene y in spot k. “n” was the total spot number. We set n

x
(k) Z n y

(k) Z 0.1 n as default in the scatter plot.17 The
coefficient 0.1 denotes the box size. After hypothesis
testing based on brxy

ðkÞ to determine the significance of each
gene interaction, the total number of significant in-
teractions including gene x is returned as NDM value for
gene x. We then used the Wilcoxon rank-sum test to iden-
tify genes with significantly different NDM degrees (false
discovery rate <0.05) in WT phenotype compared with AD,
in different brain regions and age groups.

Results

CellPhoneDB analysis reveals neural related intra-
spot L-R interactions

To explore the intra-spot molecular interactions, we clus-
tered L-R pairs by different tendencies through the Ab
accumulation process. All ST tissue domains were sepa-
rated into WT and four quantiles of AD according to the Ab
index (increasing Ab accumulation level from L1 to L4;
Table S1). All complex information involved in L-R pairs is
provided in Table S2. There were three clusters (Fig. 1B and
Table S3) in the 3-month group. Cluster 1 showed a down-
ward tendency from WT to L4. Cluster 2 showed an obvious
up-regulation from L3 to L4. Compared with any other spot
with Ab accumulation (L1eL4), L-R pairs in cluster 3 were
lower expressed in WT spots. GO analysis revealed the
different enrichment results of neuron, axon, synapse, and
amyloid related terms in each cluster of the 3-month group
(Fig. 1CeF). There are four clusters (Fig. 1G and Table S3)
in the 18-month group. Cluster 1 showed an upward ten-
dency from WT to L4. Cluster 2 showed an obvious down-
regulation in L1, while cluster 3 was mainly up-regulated in
L1. Genes in cluster 4 L-R pairs were expressed at lower
levels in WT spots than any other spots with Ab accumula-
tion (L1eL4). GO analysis revealed the different enrich-
ment results of neuron, axon, synapse, and amyloid related
terms in each cluster of the 18-month group (Fig. 1HeK).
We explored L-R pairs with both genes involved in the same
kind of term related to neuron, axon, synapse, or amyloid
and found that cluster 3 in the 3-month group and cluster 1
in the 18-month group have the most L-R pairs related to
amyloid (Fig. S2). These results showed the dynamic
changes of neural related intra-spot L-R interactions
through the Ab accumulation process.
17 L-R pairs showed opposite tendencies through
Ab accumulation in the 3-month and 18-month
groups

Cluster 1 in the 3-month group and cluster 1 in the 18-
month group had 17 common L-R pairs (Table 1). However,
these pairs showed opposite tendencies with a general in-
hibition from WT, L1/L2 (L1 and L2 Ab index group), to L3/
L4 (L3 and L4 Ab index group) in 3 months and a general
activation in 18 months among different brain regions
(Fig. 1B, G; Fig. 2A). The heatmap showed a similar clus-
tering result of these L-R pairs (except for EPHB2_EFNB2;
Fig. 2B) in different brain regions. These results suggested
that the different active patterns of 17 common L-R pairs
were mainly related to Ab accumulation rather than to
different brain regions. EPHA3_EFNA3, EPHA1_EFNA3, and
EPHA8_EFNA3 have high correlation scores with each other
in the 3-month and 18-month groups, respectively, which
revealed the existence of potential functional or regulatory
interactions between them (Fig. 2CeE).

Next, we performed protein-protein interaction analysis
to further explore the interactions in these 17 L-R pairs
(Fig. 2F). In this network, 11 genes from EFNA/EFNB and
erythropoietin-producing hepatocellular (EPH) gene fam-
ilies as L-R pairs showed strong connections between each
other. Their function was mainly related to neuron, axon,
and synapse (Fig. S2). Average expression levels of 9 EFNA/



Figure 2 L-R pairs showed opposite tendencies through Ab accumulation at 3 and 18 months in intra-spot CellPhoneDB analysis.
(A) Average expression of 17 L-R pairs with opposite tendencies. Labels showed sample group information. (B) Expression heatmap
of L-R pairs with opposite tendencies in different brain regions at 3 (left) and 18 (right) months. (C) Expression correlation between
L-R pairs with opposite tendencies at 3 (left) and 18 (right) months. (D) Correlation between EPHA3_EFNA3, EPHA1_EFNA3, and
EPHA8_EFNA3 at 3 months. (E) Correlation between EPHA3_EFNA3, EPHA1_EFNA3, and EPHA8_EFNA3 at 18 months. (F) The pro-
tein-protein interaction network of 17 L-R pairs with opposite tendencies. Arc color represents four kinds of GO terms. The directed
edge is from ligand to receptor. The red double-line marked edge represents complex. (G) Average expression of EPH-related L-R
pairs with opposite tendencies. Labels showed sample group information. TH, thalamus; HY, hypothalamus; FB, fiber tract; HPd,
dendritic layer of the hippocampus; HPs, somatic layer of the hippocampus; CNU, cerebral nucleus; CTXsp, cortical subplate; OLF,
olfactory area; ENTI, entorhinal area; TEP, temporal association area, ectorhinal area, and perirhinal area; AUD, auditory area;
SSp, primary somatosensory area; PLT, posterior parietal association area; RSP, retrosplenial area.
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EPFB/EPH-related L-R pairs were concordant with opposite
tendencies that the 3-month group showed an inhibition
and the 18-month group showed an activation when pro-
gressing from WT, L1/L2, to L3/L4 (Fig. 2G).

C3_ITGAM/ITGB2 complex was the only L-R pair that was
involved in amyloid related terms in the protein-protein
interaction network. ITGAM was a highly expressed marker
gene of microglia (Fig. 3A; single-cell RNA-seq result of
different cell types from the human brain in AlzData13

(http://www.alzdata.org/, GSE67835)). CD11b encoded by
ITGAM and CD18 encoded by ITGB2 formed leukocyte-spe-
cific complement receptor 3. iC3b is the activation product
of complement C3. Complement receptor 3’s space
conformation will change when interacting with iC3b to
initiate Ab clearance, phagocytosis, adhesion, or other
biological processes18 (Fig. 3B). C3_ITGAM/ITGB2 complex
pair was mainly down-regulated at L3/L4 in the 3-month
group, and conversely up-regulated at L3/L4 in the 18-
month group (Fig. 3C). These results showed that the
C3_ITGAM/ITGB2 complex L-R pair has different correla-
tions with Ab index at different ages.
Dynamic changes of L-R interactions across HP

L-R interaction networks of HP showed unique features in
different age groups or Ab levels (Fig. 4A, B). The L-R in-
teractions in 3 months and 18 months of both WT and AD
groups were both most concentrated on the granule cell
layer of the dentate gyrus in Hps (HPs_DG_sp) related re-
gion pairs. WT spots in both the 3-month and 18-month
groups have more significant interactions across HPs_DG_sp
and the pyramidal layer of CA3 in Hps (HPs_CA3_sp)
compared with L1/L2 and L3/L4 spots in the same age
group. Interactions within the DG polymorph layer in HPd
Figure 3 Active pattern of C3-ITGAM/ITGB2 complex. (A) ITGA
database. (B) Pattern graph of ITGAM/ITGB2 complex’s conformatio
C3-ITGAM/ITGB2 complex pairs at 3 (top) and 18 (bottom) months
(HPd_DG_po) were more specific in the 18-month spots of
the WT group compared with the 3-month spots of the
same phenotype group. L3/L4 spots in 3 months showed a
general increase in differentially expressed L-R pair
numbers compared with WT and L1/L2 spots at this age,
especially in HPs_DG_sp itself and HPs_DG_sp to other HP
regions. This tendency does not fit in the 18-month group
as more region pairs showed less differentially expressed L-
R numbers in L3/L4 sports compared with WT and L1/L2
spots. Dot plots showed the top 10 unique L-R pairs (by P-
values) that were only significantly differentially expressed
in one region pair (Fig. 4C). To explore these gene mem-
ber’s functions, we used the AlzData database to search
their scores in AD related terms. FLT1 in the 18-month
group demonstrated the highest CFG score (5). CXCL13, C3,
FGFR2, and CNR2 in the 3-month group and WNT4, VCAM1,
and VEGFA in the 18-month group also showed 4 in the CFG
grading (Table 2). These results revealed the potential of
unique L-R pairs’ AD related functions in different HP
layers.

Next, we further validated our HP L-R interaction results
using the additional spatial transcriptome datasets of two
other types of ADmodelmice. L-R interaction networks of HP
showed unique features in different phenotypes (WT, 3xAD,
and 3xPB). Comparedwith 3xAD and 3xPBmice,WTspots had
more significant interactions within DG and CA1 subregions
and cross CA1/DG (Fig. 5A, B). On the other hand, WT spots
had less significant interactions within CA2-3 and cross CA1/
CA2-3 compared with spots of 3xAD and 3xPB mice (Fig. 5A,
B). Dot plots showed the top 10 unique L-R pairs (by P-values)
that were only significantly differentially expressed in one
region pair within a certain phenotype group (Fig. S3). Next,
all unique L-R pairs in 3xAD and 3xPB (11e13 months) HP
spots were compared with the first dataset (AppNL-G-F
knock-in mice) in L1/L2 and L3/L4 HP spots at 18 months
M expression in different nerve cell types, from the AlzData
n changes when interacting with C3. (C) Average expression of
. Labels showed sample group information.

http://www.alzdata.org/


Figure 4 L-R interactions in cross the hippocampal regions in CellPhoneDB analysis. (A) L-R interaction networks in different age groups or Ab levels. The width of the edge
represents the number of significantly differentially expressed L-R pairs. The edge direction is from ligand to receptor. Labels showed sample group information. (B) Heatmap of
significantly differentially expressed L-R pair numbers between two hippocampal layers. (C) Unique top 10 L-R pairs (by P-values) that are only significantly differentially
expressed in one region pair, marked by dots with black outlines. Labels showed sample group information.
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Table 2 CFG scores of top 10 unique L-R pair genes in hippocampus analysis.

Gene eQTL GWAS PPI Early_DEG Abeta Tau CFG Note

FLT1 1 2 PSEN1, PSEN2, APOE Yes 0.466** �0.119, ns 5 HP18
WNT4 4 2 - Yes �0.634*** �0.326, ns 4 HP18
VCAM1 2 0 APOE Yes 0.575*** 0.437, ns 4 HP18
VEGFA 2 0 APP, PSEN2, APOE Yes �0.215, ns �0.758** 4 HP18
CXCL13 1 0 APP, PSEN1, APOE Yes 0.602*** 0.727** 4 HP03
C3 2 0 APP, PSEN1, PSEN2, MAPT Yes 0.850*** 0.761*** 4 HP03
FGFR2 3 1 PSEN2, APOE Yes 0.179, ns �0.387, ns 4 HP03
CNR2 1 0 APP, PSEN1, APOE Yes 0.854*** 0.750** 4 HP03
ITGA3 1 0 APP, APOE Yes �0.284, ns �0.511, ns 3 HP03, HP18
AREG NA 0 PSEN2 Yes 0.321* �0.287, ns 3 HP18
ANTXR1 2 6 - No 0.535*** �0.003, ns 3 HP18
FN1 1 2 APP, MAPT, APOE NA NA NA 3 HP03, HP18
ITGAV 2 0 APP, PSEN1, MAPT, APOE Yes �0.091, ns 0.419, ns 3 HP03, HP18
GP1BA 2 32 APP NA NA NA 3 HP18
IL13RA1 1 NA - Yes 0.727*** 0.588* 3 HP18
TGFB1 1 0 APP, MAPT, APOE NA 0.871*** 0.681** 3 HP18
EGFR 2 2 PSEN1, PSEN2, APOE NA 0.119, ns 0.012, ns 3 HP18
F11R 1 0 NA Yes 0.801*** 0.639* 3 HP18
VWF 2 0 APP, MAPT, APOE NA 0.640*** 0.493, ns 3 HP18
FZD2 9 0 APP, PSEN1, MAPT, APOE NA �0.419** �0.702** 3 HP18
COL4A5 4 NA APOE No 0.396** 0.359, ns 3 HP03
COL16A1 1 0 - Yes 0.470** 0.176, ns 3 HP03
FGF1 0 17 PSEN2, APOE Yes 0.145, ns �0.415, ns 3 HP03
FGF18 10 1 PSEN2, MAPT, APOE NA NA NA 3 HP03
CCL4 2 0 - Yes 0.873*** 0.887*** 3 HP03
CD70 1 0 - Yes 0.714*** 0.691** 3 HP03
WNT7A 1 0 PSEN2 Yes �0.055, ns 0.241, ns 3 HP03
TNFRSF17 2 0 PSEN2 NA 0.775*** 0.574* 3 HP03

Notes: eQTL, expression of the target gene is regulated by AD genetic variants (genetic variants: IGAP GWAS P-value < 1E-3; eQTL: P-
value < 1E-3). GWAS, IGAP P-value < 1E-3. PPI, the target gene has significant physical interaction with APP, PSEN1, PSEN2, APOE, or
MAPT (P-value <0.05). Early_DEG, the target gene is differentially expressed in AD mouse models before AD pathology emergence.
Pathology cor (abeta), correlation of target gene expression with AD pathology in abeta line AD mouse models (r, P-value; ns: P > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001). Pathology cor (tau), correlation of target gene expression with AD pathology in tau line AD mouse
models (r, P-value; ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). CFG is the total convergent functional genomic score of the target
gene; 1 CFG point is added if any of the above evidence is significant, and the CFG point ranges from 0 to 5.
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respectively. Although 3xAD and 3xPB mice were younger
than the AppNL-G-F knock-in mice, they were all in the
cognitive impairment disease stage with deficits in memory
and learning. “COL1A1_a10b1 complex”, “COL8A2_a10b1
complex”, “NRG3_ERBB4”, “MADCAM1_a4b7 complex”, and
“EPHA3_EFNA3” were significantly differentially expressed
in the same region pairs in 3xAD and 3xPB spots. Meanwhile,
these L-R pairs were significantly differentially expressed in
L1/L2 subregion pairs at 18months which belong to the same
region that the unique L-R pairs in 3xAD and 3xPB spots
showed different expression (Fig. 5C). “NAMPT_P2RY6”,
“COL13A1_a1b1 complex”, “MERTK_GAS6", “NPR1_NPPC”,
and “NRG3_ERBB4” were significantly differentially
expressed in the same region pairs in 3xAD and 3xPB spots.
Meanwhile, these LR pairs were significantly differentially
expressed in L3/L4 subregion pairs at 18 months which
belong to the same regions that the unique L-R pairs in 3xAD
and 3xPB spots showed different expression (Fig. 5D). These
results showed the potential functional interactions in the
related region pairs and further validated the spatial con-
servation of these L-R pairs in different AD models.

TF regulatory analysis identified a functional TF
network in the HP

To further explore other kinds of interactions in HP, we
used SCENIC to perform TF regulatory analysis. According to
the TF regulatory network activity heatmap, different
phenotype groups at 3 months and 6 months were clustered
together, whereas the transcriptomics regulatory profile
showed a clear separation between WT and AD groups at 12
months and 18 months (Fig. 6A). This separation was
concordant with the progression of AD pathology over these
periods. According to the TF regulatory activity heatmap of
different HP regions, HPs (somatic layer of the hippocam-
pus), and HPd (dendritic layer of the hippocampus) spots
were clustered as two groups as expected (Fig. 6B). Reg-
ulons were clustered into three groups according to their



Figure 5 L-R interactions cross the hippocampus in 3xAD and 3xPB mice. (A) L-R interaction networks in WT, 3xAD, and 3xPB
mice. The width of the edge represents the number of significantly differentially expressed L-R pairs. The edge direction is from
ligand to receptor. (B) Heatmap of significantly differentially expressed L-R pair numbers between two hippocampal layers.
Different colors represented the numbers of differentially expressed L-R pairs from less (blue) to more (red). (C) Significantly
differentially expressed L-R interactions in the same region pairs in 3xAD, 3xPB slides, and corresponding subregion pairs in the L1/
L2 group at 18 months. (D) Significantly differentially expressed L-R interactions in the same region pairs in 3xAD, 3xPB slides, and
corresponding subregion pairs in the L3/L4 group at 18 months.
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activities. Cluster 1 regulons were mainly active in the so-
matic layer, whereas cluster 2 regulons were mainly active
in the DG_po subregion of the dendritic layer. Genes in
cluster 1 regulons were involved in neurotransmitter
(regulation of neurotransmitter levels, neurotransmitter
transport, neurotransmitter secretion, etc.), synaptic
(synaptic vesicle cycle, synapse organization, synaptic
vesicle transport, etc.), and cognition/memory related
functions (Fig. 6C). Genes in cluster 2 regulons were
involved in stimulus (especially visual stimulus) response
related functions like visual perception, detection of light
stimulus, etc. (Fig. 6D). Further, we used Cytoscape for
network visualization and marked the categories of gene
function, i.e., cognition/memory, neurotransmitter, and
synaptic in cluster 1 regulon network (Fig. 6E) and stimulus
response in cluster 2 regulon network (Fig. 6F).

In the TF regulatory heatmap of different Ab index
groups, we found a cluster (cluster A) that included 6 up-
regulated regulons from WT-to-L4 Ab levels (Fig. 7A). GO
analysis showed that their functions were mainly involved
in “negative regulation of humoral immune response” and
“DNA-binding transcription activator activity, RNA poly-
merase II-specific” (Fig. 7B). Different gene functions were
also marked in the regulatory network of cluster A (Fig. 7C).
PRKCB and NPTX2 in HP network and NR2F2 in cluster A
demonstrated the highest CFG score, suggesting these
genes may be crucial in AD related pathological process
(Table 3).
TF regulatory analysis identified functional TF
network in ENTI

Since ENTI is an important affected region in the early AD
process,10,11 we further performed SCENIC analysis in this
brain area. In the TF regulatory heatmap of different Ab
index groups, we found cluster 3 with 32 regulons was
mainly active in L1 and L2 groups (Fig. 7D). This result was
concordant with the progression of AD pathology in this
region. GO analysis showed functions of regulons in cluster
3 were mainly involved in neurotransmitter (regulation of
neurotransmitter levels, neurotransmitter transport, etc.),
synaptic (synapse organization, synaptic vesicle cycle,
synaptic vesicle localization, etc.), and cognition/memory
related terms (Fig. 7E). Regulatory network of cluster 3 was
marked with the corresponding gene functions (Fig. 7F).
MEF2C and PRKCB ranked first in the CFG score list of
cluster 3 TFs (Table 4). These findings suggest that MEF2C
and PRKCB may potentially regulate the neuropathology
process in ENTI.

To determine if any of the high CFG score genes related
to ENTI were differentially expressed in human AD



Figure 6 Transcription factor regulatory analysis in the hippocampus. (A) Regulons active heatmap in different ages and phe-
notypes. (B) Regulon active heatmap in different hippocampal layers. (C) GO analysis results in cluster 1 regulons in Figure 7B. (D)
GO analysis results in cluster 2 regulons in Figure 7B. (E) Transcription factor regulatory network in cluster 1 regulons. (F) Tran-
scription factor regulatory network in cluster 2 regulons.
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datasets, we obtained a human snRNA-seq dataset
composed of AD and healthy ENTI cortex samples and pro-
bed for our genes.15 Six cell types were identified in this
dataset (Fig. 8A, left). The UMAP plot of MEF2C expression
is shown in Fig. 8A (right). Compared with other cell types,
MEF2C was highly expressed in microglia and neuron (false
discovery rate <0.05; Fig. 8B). A subset of AD neuron
(Fig. 8C) and endothelial cell (Fig. 8D) also appeared to
have up-regulated MEF2C compared with control. Presum-
ably, genes related to ENTI with higher CFG scores may
impact AD cell biology, especially in neuron to a greater
extent.
SSN analysis revealed specific high NDM degree
genes in different phenotypes

To explore gene connections at the whole transcriptome
level, we constructed SSN for each single spot (i.e., one
network for one spot) in HP and ENTI regions. Gene
expression changes dynamically or even drastically with
time and conditions, however, the functions or linear/
nonlinear associations among genes generally remain un-
changed or change gradually with small perturbations.17 So,
we used SSN to transform the “unstable” gene expression
matrix into a “stable” gene association based NDM. We



Table 3 CFG scores of target genes in hippocampal transcription factor analysis.

Gene eQTL GWAS PPI Early_DEG abeta tau CFG Cluster

PRKCB 1 5 PSEN1, MAPT, APOE Yes �0.231, ns �0.199, ns 4 HPs
NR2F2 0 1 PSEN2, APOE Yes �0.487*** 0.075, ns 4 A
NPTX2 1 1 - Yes �0.688*** �0.783*** 4 HPs
SYT1 0 7 MAPT Yes �0.209, ns �0.471, ns 3 HPs
SV2A 2 0 NA Yes �0.199, ns �0.746** 3 HPs
STAT5A 1 0 PSEN2 NA 0.477** 0.606* 3 A, HPd
SREBF2 1 2 APOE NA NA NA 3 HPs
HSF1 1 0 - Yes 0.462** 0.120, ns 3 HPs
HOXA5 1 NA - Yes 0.372* 0.052, ns 3 HPs
HOMER1 1 0 - Yes �0.338* �0.341, ns 3 HPs
GRIA1 3 30 MAPT No 0.036, ns 0.145, ns 3 HPs
GAD1 3 0 - Yes �0.207, ns �0.562* 3 HPs
ESRRA 2 0 PSEN2, MAPT, APOE Yes �0.043, ns �0.309, ns 3 A, HPs
EGR1 0 2 PSEN2, MAPT NA �0.403** �0.559* 3 HPs
ARC 2 1 - Yes �0.194, ns �0.259, ns 3 HPs

Notes: eQTL, expression of the target gene is regulated by AD genetic variants (genetic variants: IGAP GWAS P-value < 1E-3; eQTL: P-
value < 1E-3). GWAS, IGAP P-value < 1E-3. PPI, the target gene has significant physical interaction with APP, PSEN1, PSEN2, APOE, or
MAPT (P-value <0.05). Early_DEG, the target gene is differentially expressed in AD mouse models before AD pathology emergence.
Pathology cor (abeta), correlation of target gene expression with AD pathology in abeta line AD mouse models (r, P-value; ns: P > 0.05;
*P < 0.05; **P < 0.01; ***P < 0.001). Pathology cor (tau), correlation of target gene expression with AD pathology in tau line AD mouse
models (r, P-value; ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). CFG is the total convergent functional genomic score of the target
gene; 1 CFG point is added if any of the above evidence is significant, and the CFG point ranges from 0 to 5.

Figure 7 Transcription factor regulatory analysis in Ab index group. (A) Regulon active heatmap in different Ab index groups in
the hippocampus. (B) GO analysis results in cluster A regulons in Figure 8A. (C) Transcription factor regulatory network in cluster A
regulons. (D) Regulon active heatmap in different Ab index groups in the entorhinal cortex. (E) GO analysis results in cluster 3
regulons in Figure 7D. (F) Transcription factor regulatory network in cluster 3 regulons.
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Table 4 CFG scores of target genes in entorhinal cortex transcription factor analysis.

Gene eQTL GWAS PPI Early_DEG abeta tau CFG

MEF2C 1 2 PSEN2, MAPT Yes �0.159, ns �0.198, ns 4
PRKCB 1 5 PSEN1, MAPT, APOE Yes �0.231, ns �0.199, ns 4
SV2A 2 0 NA Yes �0.199, ns �0.746** 3
VGF 2 0 - Yes �0.792*** �0.760** 3
HSF1 1 0 - Yes 0.462** 0.120, ns 3
SREBF2 1 2 APOE NA NA NA 3
EGR1 0 2 PSEN2, MAPT NA �0.403** �0.559* 3
STAT5A 1 0 PSEN2 NA 0.477** 0.606* 3
CUX2 2 2 PSEN2 NA NA NA 3
GRIA1 3 30 MAPT No 0.036, ns 0.145, ns 3

Notes: eQTL, expression of the target gene is regulated by AD genetic variants (genetic variants: IGAP GWAS P-value < 1E-3; eQTL: P-
value < 1E-3). GWAS, IGAP P-value < 1E-3. PPI, the target gene has significant physical interaction with APP, PSEN1, PSEN2, APOE, or
MAPT (P < 0.05). Early_DEG, the target gene is differentially expressed in AD mouse models before AD pathology emergence. Pathology
cor (abeta), correlation of target gene expression with AD pathology in abeta line AD mouse models (r, P-value; ns: P > 0.05; *P < 0.05;
**P < 0.01; ***P < 0.001). Pathology cor (tau), correlation of target gene expression with AD pathology in tau line AD mouse models (r, P-
value; ns: P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). CFG is the total convergent functional genomic score of the target gene; 1 CFG
point is added if any of the above evidence is significant, and the CFG point ranges from 0 to 5.

Figure 8 snRNA-seq in human ENTI and SSN analysis results. (A) UMAP manifold of snRNA-seq colored by cell type (left) and
MEF2C expression (right). (B) MEF2C expression in different cell types. (C) UMAP of neuron subset colored by phenotype (left) and
MEF2C expression (right). (D) UMAP of endothelial cell subset colored by phenotype (left) and MEF2C expression (right). (E) Genes
with significantly different NDM degrees (WT vs. AD) in the hippocampus. (F) Genes with significantly different NDM degrees (WT vs.
AD) in ENTI. snRNA-seq, single-nuclei RNA sequencing; ENTI, entorhinal cortex; SSN, spot-specific network; WT, wild-type; AD,
Alzheimer’s disease; NDM, network degree matrix.
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found genes with significant differences in NDM degrees
between WT and AD in HP (Fig. 8E) and ENTI (Fig. 8F) in
different age groups. For example, Ttr showed a higher
NDM degree in WT spots than AD spots in the 3-month group
of HP. Conversely, Ttr showed a higher NDM degree in AD
spots than WT spots in the 12-month group of HP. Trem2
showed a higher NDM degree in WT spots than AD spots in
the 18-month group of HP. Conversely, Trem2 showed a
higher NDM degree in AD spots than WT in the 18-month
group of ENTI. These results showed the specific high NDM
degree genes that may have wide interactions across the
whole transcriptomes in certain phenotypes in different
brain regions and age groups.
Discussion

In the current study, we performed L-R communication, TF
regulatory network, and SSN analyses to reveal the
dependence and dynamics of gene associations from mul-
tiple perspectives based on samples from mouse and human
brains. Using an ST dataset of App knock-in mouse model,12

we revealed the specific L-R interaction status across the
whole brain areas or HP layers within and across spots in
different spatial regions and pathological status. We also
further revealed important TF regulatory and SSN gene
associations in HP and ENTI, respectively. Next, we used
another independent ST dataset from different AD mouse
models and human ENTI snRNA-seq data and AlzData
database (that includes both human and mouse data) to
partially validate our results. This study provides a frame-
work for the comprehensive analyses of gene-gene associ-
ations or transcriptional networks that are spatio-temporal
dependent within or among spots in ST, thereby laying the
foundation for exploring characteristic gene functions and
in-depth AD etiology from the perspective of spatio-tem-
poral dependent gene interactions.

In our study, Mfuzz assigned neuron, axon, synapse, and
amyloid related intra-spot L-R pairs into different clusters.
Interestingly, we found that 17 L-R pairs showed opposite
tendencies in the 3-month and 18-month groups through the
Ab accumulation process. The opposite tendencies of these
17 L-R pairs may be related to their different functions in
different pathological statuses. For example, interactions in
the protein-protein interaction network were most concen-
trated among EFNA/EFNB and EPH gene families. EPH re-
ceptors belong to the tyrosine kinase receptor gene family
that plays a pivotal role in brain development.19 EPHA4
activation can lead to dendritic spine retraction and synaptic
dysfunction.19 Several reports also support the protective
role of EPHA4 in AD pathogenesis.20,21 EPHA4 promotes the
proliferation of neural progenitor cells and alleviates
cognitive impairment in a PDGFRb dependent manner.20

These studies showed the contradictory functions of EPHA4
in AD pathogenesis. Since our results also showed opposite
tendencies in EPHA4 related L-R pairs through Ab accumu-
lation in the 3-month and 18-month groups, further investi-
gation may focus on the potentially different functions of
EPHA4 in the different stages or processes of the disease
during different age groups.

C3_ITGAM/ITGB2 complex was the only Ab related L-R
pair between spots in the GO enrichment analysis results
that has the opposite tendencies between 3-month-old and
18-month-old mice. Interaction of complement component
iC3b with its receptor complement receptor 3 (CD11b/
CD18) on the surface of microglia involved in the uptake
and clearance of Ab.22 C3 deficiency in APP/PS1 mice
increased plaque burden in the mouse brain with decreased
age- and plaque-related synapse and neuron loss, glial
reactivity, and spared cognitive decline.18 Our results
showed the potential of the C3_ITGAM/ITGB2 complex’s
different functions in plaque-related neurodegeneration
and cognitive health at different age groups.

L-R associations across brain regions showed different
states between different ages, region pairs, and phenotypes
in both expression levels and different numbers of signifi-
cantly differentially expressed L-R pairs. For example,
VCAM1_a4b7 complex in HPd_CA1_so to HPs_CA1_sp, L3/L4
level in 18 months. The low levels of VCAM1 on brain endo-
thelial cells allowed microglia to remain ramified, calm, and
proceed to neurogenesis. Increased VCAM1 expression in the
old brain tethered more leukocytes to the luminal side and
activated microglia to suppress neurogenesis which could be
reversed by systemic anti-VCAM1 antibody.23 In addition,
some L-R pairs showed spatial conservative differential
expression (differentially expressed in the same region pair
when compared with other region pairs) in different AD
models (AppNL-G-F, 3xAD, and 3xPB) including collagen
related genes like COL1A1, COL8A2, and COL13A1. Post-
mortem evidences were reported in transgenic animal
models and brains of individuals with AD, that increased
collagen content was related to microvascular morphology
changes along with the cognitive status worsening in AD
mouse model and AD human patients.1,24 Our results sup-
plied the spatio-temporal information for the interactions
that contained these AD related genes. These results may
furnish a foundation for future functional research based on
L-R interactions instead of only individual genes, with the
novel high spatial resolution empowered by ST.

According to the TF regulatory network analysis results
of HP in different age groups, transcriptomics regulatory
profiles of WT mice at 12 and 18 months of age were clus-
tered together, whereas the AD mice transcriptomics reg-
ulatory profiles still changed between these two time
points. These tendencies were in concordance with the
progression of pathology over these periods, as well as the
original research results of this dataset.12 GO enrichment
analysis results showed that regulons active in the somatic
layer were involved in neurotransmitter, synaptic, and
cognition/memory functions, whereas regulons active in
the DG_po subregion of the dendritic layer were involved in
stimulus (e.g., visual stimulus) response related functions.
These results showed region-specific active patterns of such
regulons in HP with different potential functions.

Next, we explored the regulon active patterns through
Ab deposition in HP and found that a gradually up-regulated
regulon cluster (cluster A) was involved in “negative regu-
lation of humoral immune response” and “DNA-binding
transcription activator activity, RNA polymerase II-specific”
GO terms. These dynamic changes showed cluster A reg-
ulons may be related to the humoral immune response and
the catastrophic failure of the transport of transcription-
related molecules (especially RNA polymerase II) between
the cytoplasm and the nucleus in the late AD neurotoxic
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process.25 GO analysis results of 32 active regulons in L1
and L2 groups of ENTI, an early affected area in AD,
revealed their wide influences at the early AD stage
including neurotransmitter, synaptic, and cognition/mem-
ory related functions. MEF2C was one of the high CFG score
TFs in these active regulons. MEF2C was highly expressed in
AD neuron and endothelial cell clusters compared with
control neuron and endothelial cell clusters in the snRNA-
seq data of human ENTI (Fig. 8C, D). The MEF2 TF family
modulates the structural and synaptic plasticity underlying
memory formation, and MEF2C gene is related to synaptic
function alteration in AD.26e29 Overexpression of MEF2 has
been reported to impede the increase of learning-induced
spine and impair memory formation via an Arc-mediated
reduction of GluA2-AMPA-type glutamate receptor
expression.30,31

Gene connection analysis at the whole transcriptome
level showed genes with high NDM degrees were specific in
certain phenotypes of different regions and age groups. Ttr
is an AD neuroprotection gene that is known to bind to Ab
and facilitate its clearance from the brain,32 SSN analysis
showed the transcriptome-based influences of Ttr were
unique in certain phenotypes in different age groups, which
underlying the Ab clearance function of Ttr may also
depend on age conditions. Trem2 is an AD risk factor due to
its impacts on central/peripheral lipid metabolism and the
integrity of the blood-brain barrier.33 SSN analysis showed
the transcriptome-based influences of Trem2 were unique
in certain phenotypes in different brain areas. These results
showed these genes’ unique transcriptome-based in-
fluences in different phenotypes, regions, and age groups
that further suggested their known impact on AD may be
unique under such different conditions. Here, this added
information was explored at the novel ST resolution for the
first time.

CellPhoneDB and SCENIC were developed for the single-
cell RNA-seq data. Both methods have been used in the
bulk-like ST data before.34e36 However, the related results
were limited to the spot resolution, without specified cell
type information.

In the case of the validation in the HP 3xAD/3xPB
datasets, we tried to identify the L-R interactions that were
significantly differentially expressed in the same region
pairs in 3xAD, 3xPB slides, and the same corresponding
subregion pairs in L1/L2 or L3/L4 (Fig. 4C) group at 18
months of the AppNL-G-F dataset, respectively. These re-
sults primarily validated that the significantly differentially
expressed L-R interactions were consistent in different AD
mouse models. In the case of the validation in the human
ENTI dataset, we primarily validated that some important
TFs in the AppNL-G-F dataset were also differentially
expressed in certain cell types of human AD patients
compared with control (Fig. 8AeD). However, a limitation
of the present study is the low resolution of the ST dataset.
The research object of this study is the Ab niche (based on
spots). Both cell proportion and regulon activity of certain
cell types can affect the regulon activity level of spots.
Under the current resolution of this dataset, it is more
suitable for conducting preliminary research in the Ab niche
(100 mm in diameter), rather than excessive distinguishing
between the two reasons mentioned above. A higher-res-
olution ST dataset and related molecular experiments will
provide more thoroughness and more solid validation of the
current results.

Conclusions

The current study revealed gene associations in multi-as-
pects based on an ST dataset of App knock-in mouse model
with the validation on the Alzdata database and supple-
mentary spatial sequencing/snRNA-seq datasets from mice
and human brains. The unique genome-wide spatio-tem-
poral dependent association features in different spatial,
temporal, and pathological statuses establish the founda-
tions to reveal the advanced and in-depth AD etiology and
mechanisms in different stages of the neurodegeneration
processes on the amyloid plaque niche in AD.
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